Machine Learning Enivorment Settings for Windows
Published:
This post will show you how to set up a machine learning enivorment for windows.
CUDA
- First, check your GPU version. You can check by these steps:
- Open the folder and click This PC.
- Right click on the computer icon and select Properties
- On the left side, click on the Device Mangager
- Click on the Display Adapters, for example
NVIDIA Geforce GTX 1650 Ti
- Website
- For me, I will choose to Download
CUDA 11.7
. To find the previous version, click here
cuDNN
- Website
- After downloading, unzip the file inside the folder that your CUDA installed.
Anaconda
- Website
conda -V
can check versionconda list
will show all packages in current envconda create -n [env name] python=3.8
can create a new enviroment based on python 3.8conda activate [env name]
can activate the enviromentconda deactivate
can leave the enivormentconda env list
can show all envsconda remove -n ENV_NAME --all
remove env- Remove the folder from that env
Some useful packages
- scikit-learn
conda install -c anaconda scikit-learn
- matplotlib
conda install matplotlib
- pandas
conda install pandas
Tensorflow (conda install)
After creating a new env bsed on anaconda and activate it.
- Version check
- Search tensorflow version
conda search tensorflow
- Search tensorflow-gpu
conda search tensorflow-gpu
- Install tensorflow
conda install tensorflow
- Install tensorflow-gpu
conda install tensorflow-gpu
conda install tenssorflow==2.10.0
conda install tensorflow-gpu==2.6.0
Pytorch (conda install)
- Website
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda list
can check if PyTorch is installed
Check GPU is used in PyTorch
import torch
torch.cuda.is_available()
torch.cuda.device_count()
torch.cuda.current_device()
torch.cuda.device(0)
torch.cuda.get_device_name(0)
Leave a Comment